A Desirable Framework for Creating a Carbon-Neutral Society

Dai-Yeun Jeong PhD
jeongdy@jejunu.ac.kr

Director of Asia Climate Change Education Center, South Korea
Emeritus Prof. at Jeju National University, South Korea

January 12, 2023
Table of Contents

Ⅰ. Some Debates on Climate Change
Ⅱ. The Current Status, Future Prospect and Impact of Climate Change at a Global Level
Ⅲ. The Concept and Implications of Carbon Neutrality
Ⅳ. United Nations’ Strategy on Carbon Neutrality
Ⅴ. A Desirable Direction and Contents for Achieving Carbon Neutrality
Ⅵ. Concluding Remarks
I. Some Debates on Climate Change

1. Definition and Cause of Climate Change
2. Emission of Human-induced Greenhouse Gas (CO2-eq)
3. United Nations’ Point of View on Climate Change
I. Some Debates on Climate Change

1. Definition and Cause of Climate Change

(1) Definition of Climate Change

- Weather
 - The state of the atmosphere at a given time and place,
 - With respect to variables such as temperature, moisture, wind velocity, and barometric pressure, etc.
 - Conceptual unit: day-to-day

- Climate
 - The long-term prevalent weather conditions (at least 10 years)
 - In other words
 - the average weather conditions through long time
 - in a region

- Category of climate: tropical, temperate, humid climate, etc.
1. Definition and Cause of Climate Change

(1) Definition of Climate Change

- Climate change is the change
 - in the average weather conditions and/or
 - in the distribution of weather events (extreme drought/heavy rain, etc.)
 - in a region during at least the past 10 years (empirically 30 years)
I. Some Debates on Climate Change

1. Definition and Cause of Climate Change

(2) Climate Change, Is It a Real Reality?

- Realism (mainstream): 97%
 - Global warming: observed/measured scientifically
 - Temperature/Sea level rise, etc.: true

- Skepticism (anti-mainstream): 3%
 - Global warming: uncertainty
 - A result from
 - Uncertainty of climate science
 - Not perfectly scientific analysis/measurement
 - Exaggerated information is being provided to people
I . Some Debates on Climate Change

1. Definition and Cause of Climate Change

(3) Cause of Climate Change

- Natural factors
 - biotic process, variation in solar radiation, etc → global warming
 - interglacial period (evidenced from ruins in glacial period)

- Human-induced factors (UNFCCC: United Nations Framework Convention on Climate Change)
 - emission of greenhouse gases
 - Kyoto Protocol in 1997 (UNFCCC)
 - 6 global warming substances
 - CO2, CH4, N2O, HFCs, PFCs, SF6
I. Some Debates on Climate Change

2. Emission of Human-induced Greenhouse Gas (CO2-eq)

<table>
<thead>
<tr>
<th>Country (10)</th>
<th>Emission by Year (billion ton)</th>
<th>Ranking</th>
<th>Emission per Person (ton/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>2.51</td>
<td>7.79</td>
<td>9.70</td>
</tr>
<tr>
<td>USA</td>
<td>4.99</td>
<td>5.47</td>
<td>5.42</td>
</tr>
<tr>
<td>India</td>
<td>0.66</td>
<td>1.56</td>
<td>1.97</td>
</tr>
<tr>
<td>Russia</td>
<td>2.44</td>
<td>1.80</td>
<td>1.83</td>
</tr>
<tr>
<td>Japan</td>
<td>1.16</td>
<td>1.25</td>
<td>1.24</td>
</tr>
<tr>
<td>Germany</td>
<td>1.02</td>
<td>0.86</td>
<td>0.81</td>
</tr>
<tr>
<td>S. Korea</td>
<td>0.25</td>
<td>0.54</td>
<td>0.61</td>
</tr>
<tr>
<td>Canada</td>
<td>0.45</td>
<td>0.57</td>
<td>0.56</td>
</tr>
<tr>
<td>Indonesia</td>
<td>0.16</td>
<td>0.41</td>
<td>0.49</td>
</tr>
<tr>
<td>UK</td>
<td>0.59</td>
<td>0.53</td>
<td>0.47</td>
</tr>
<tr>
<td>Total in the world</td>
<td>22.7</td>
<td>31.7</td>
<td>33.9</td>
</tr>
</tbody>
</table>

I. Some Debates on Climate Change

3. United Nations’ Point of View on Climate Change

- **Cause**
 - Natural factor: 20%
 - Human-induced factor: 80%

- **Impact of greenhouse gas by greenhouse gas substance**
 - Different by
 - emission per unit
 - total quantity being emitted
 - Impact of CO2 (total quantity being emitted)
 - scholars: 66% - 98%
 - UNFCCC: 80%

- **Responsibility**
 - Most developed countries: 70%
 - Developed/developing countries: 30%
Ⅱ. The Current Status, Future Prospect and Impact of Climate Change at a Global Level

1. The Current Status and Future Prospect of Climate Change

2. The Impact of Climate Change
 (1) On Nature
 (2) On Humans/Society
Ⅱ. The Current Status, Future Prospect and Impact of Climate Change at a Global Level

1. The Current Status and Future Prospect of Climate Change
 - Average temperature of the earth: having been constant for hundreds of millions of years (average daily temperature)

```
Winter: lower than 5°C
Summer: higher than 20°C
Spring and Autumn: 5°C ~ 19°C
annual average temperature of the earth
```
Ⅱ. The Current Status, Future Prospect and Impact of Climate Change at a Global Level

1. The Current Status and Future Prospect of Climate Change

 o Current Evidences of global warming (IPPC)
 - Temperature rise: 1.07°C over the past 100 years
 - Change in season: winter was reduced (30 days)
 - Sea level rise: 1.88mm every year since 1961
 - Precipitation intensity: having increased

 o Prediction (IPPC)
 - Species: 20-30% extinction by 2200
 - Global temperature rise: 1.1°C - 6.4°C by 2100
 - Sea level rise: 1.00m (submergence of current land: 1.2%)
 - Climate refuge: 2.3 billion (about 30% of current world population)
Ⅱ. The Current Status, Future Prospect and Impact of Climate Change at a Global Level

2. The Impact of Climate Change

(1) On Nature (Example)

- Change in habitat of plants and animals
- Loss of/Decrease in biodiversity

* change in the original status of nature
 → environmental problems
 → crisis of nature → crisis of human existence
Ⅱ. The Current Status, Future Prospect and Impact of Climate Change at a Global Level

2. The Impact of Climate Change

(2) On Humans/Society (Example)

- Water supply
- Food production
- Human health
- Economic structure and development
- Population
- World trading system
- Land-use
- Citizens’ lifestyle
Ⅲ. The Concept and Implications of Carbon Neutrality

1. Low Carbon
2. Carbon Neutrality
3. Carbon-zero (Carbon-free)
4. Climate Neutrality
Ⅲ. The Concept and Implications of Carbon Neutrality

1. Low Carbon

- Has its roots in the UNFCCC adopted in Rio in 1992
- Is generally used to describe forward-looking national economic development plans or strategies that encompass low emission and/or climate-resilient economic growth, but no absolute level of reduction (e.g. below 20%, to the way to zero emission, etc.)
- Also include provisions to reduce vulnerability to the impact of climate change
- Effectiveness: climate change continues, but its acceleration will be reduced
Ⅲ. The Concept and Implications of Carbon Neutrality

2. Carbon Neutrality

- Removing as much carbon from the atmosphere as we put in → net-zero carbon emission
- The overall goal is to achieve a zero carbon footprint
- Approach to zero carbon footprint
 - carbon offset: ex. wind farm, solar park
 - buying enough carbon credits to make up the difference
 - industrial process such as production of carbon-neutral fuel
 - reducing and/or avoiding carbon emission
 - unavoidable emissions are offset
- Effectiveness: climate change continues, but does not get more serious
Ⅲ. The Concept and Implications of Carbon Neutrality

3. Carbon-zero (Carbon-free)

- Removal more than we emit
- But, ‘actual carbon-zero’ is not possible
- The best that we can achieve is
 - ‘virtual zero emission’ (at least a 90% reduction)
 - ‘negative carbon emission’ (artificial carbon sink by tree planting, carbon capture and storage, etc.)
- True carbon-zero is
 - removing carbon more than we emit
 - through (virtual zero carbon) + (some negative carbon)
- Effectiveness: climate change is gradually reduced, and moves toward climate neutrality
4. Climate Neutrality

- Net change to atmosphere 0 ton through low carbon, carbon neutralith and carbon-zero
- The state of climate before industrialization in the 18th century
- It takes about 100 years to reach climate neutrality from the year we start reducing 10% of CO2 emission (4 billion ton at a global level)
IV. United Nations’ Strategy on Carbon Neutrality

1. Low Carbon Strategy: 1997 - 2012 (Kyoto Protocol)
1. Low Carbon Strategy: 1997 - 2012 (Kyoto Protocol)

(1) Category of Country

- Annex I
 - Most developed
 - Compulsory reduction

- Non-Annex I
 - Developed/Developing
 - Recommended to reduce

- Annex II
 - Least developed
 - Benefit of free financial/technology transfer from Annex I
IV. United Nations’ Strategy on Carbon Neutrality

1. Low Carbon Strategy: 1997 - 2012 (Kyoto Protocol)

(2) Goal of Reduction by 2012

- Different allocation by Annex I country (5%, etc.: Up to 10%)
- Average: 5.2% compared to 1990 emission (22.7 billion ton)

(3) Reduction Cost (per ton)

- Different by
 - Country (available technology, etc)
 - Sector to be reduced (industry, transport, waste, etc.)

- By industry
 - Textile industry: US$20
 - Steel industry: US$700
IV. United Nations’ Strategy on Carbon Neutrality

1. Low Carbon Strategy: 1997 - 2012 (Kyoto Protocol)

(4) Three Compensation Strategies for Reduction Cost

(Applied to Annex I Country)

- Joint Implementation (JI)
 - Annex 1 can invest in an emission reduction project in any other Annex 1 where reducing emission may be cheaper as an alternative to reducing emissions domestically
 - using the resulting Emission Reduction Units (ERU) towards their commitment goal
IV. United Nations’ Strategy on Carbon Neutrality

1. Low Carbon Strategy: 1997 - 2012 (Kyoto Protocol)

(4) Three Compensation Strategies for Reduction Cost

(Applied to Annex I Country)

- Clean Development Mechanism (CDM)
 - Annex 1 can implement emission-reduction projects in Non-Annex 1 and Annex 2 as an alternative to reducing emissions domestically
 - for Annex 1 to achieve their commitment goal
 - for Non-Annex 1 and Annex 2 to achieve domestic socio-economic development through the investment in capital and technology by Annex 1
 - CDM awards these projects Certified Emission Reductions (CERs)
IV. United Nations’ Strategy on Carbon Neutrality

1. Low Carbon Strategy: 1997 - 2012 (Kyoto Protocol)

(4) Three Compensation Strategies for Reduction Cost
 (Applied to Annex I Country)

- Emission Trading Scheme (ETS)
 - a market-based approach to reduction of emission
 - in case that Annex 1 reduces emission more than commitment goal, they can sell the surplus in market
 - in case that Annex 1 do not achieve commitment goal, they should buy the amount of emission they do not achieve commitment goal
IV. United Nations’ Strategy on Carbon Neutrality

1. Low Carbon Strategy: 1997 - 2012 (Kyoto Protocol)

(5) A Gunless War on Reduction

- South Korea: 10% → 3%
- Others (examples)
 - China: equity
 - USA: excessive social cost against uncertainty
 - Kenya (lean crops): Requesting OECD countries
 - free financial support
 - to purchase insurance against lean crops
IV. United Nations’ Strategy on Carbon Neutrality

 - Negotiation for establishing a new strategy
 - Not successful for drawing consensus among member countries

- Other name of Paris Agreement: Post-2020 New Climate Regime
- Background of carbon neutrality strategy having been adopted
 - Marginal temperature for self-recovery of the earth: 2.0°C
 - By 2100: Lower than 2.0°C (real target: lower than 1.50°C)

- Goal: achievement of carbon neutrality before 2050
 - All countries
 - are obligated to reduce carbon emission
 - should set up reduction target by themselves, and submit it to UNFCCC
 - should inspect implementation of carbon reduction every 5 years from 2030, and report it to UNFCCC
 - Most developed countries
 - should provide developing countries with least $100 billion a year
 - for climate change response from 2020
V. A Desirable Direction and Contents for Achieving Carbon Neutrality

1. A Framework to Approach Carbon Neutrality

2. Approaches to Achievement of Carbon Neutrality (Policy)
 (1) Nature-based Approach
 (2) Technology-based Approach
 (3) Societal System-based Approach

3. Introduction of Governance to Policy-Making Process

4. Policy Effect Analysis
V. A Desirable Direction and Contents for Achieving Carbon Neutrality

1. A Framework to Approach Carbon Neutrality

![Diagram showing the relationship between Societal System, Climate Change Impact, and Response Strategy.]

- Societal System: Industrialization, Urbanization, Consumerism, Globalization
- Climate Change Impact: Nature, Humans/Society
- Reducing driving-force
- Improvement of the status of CC
- Response Strategy
V. A Desirable Direction and Contents for Achieving Carbon Neutrality

2. Approaches to Achievement of Carbon Neutrality (Policy)

(1) Nature-based Approach (Example)
 - Creating the sources of carbon sink
 - Planting tree
 - Expanding grassland
 - Expanding urban green space
 - Expanding blue carbon (carbon sink + restoring ecosystems)

(2) Technology-based Approach (Example)
 - Improvement of energy efficient
 - Supply of new and renewable energy
 - Carbon capture/storage/sequestration
 - Carbon utilization
V. A Desirable Direction and Contents for Achieving Carbon Neutrality

2. Approaches to Achievement of Carbon Neutrality (Policy)

(3) Societal System-based Approach

- Transforming to a low carbon socio-economic system
 - Economic: Maximizing profit + Minimizing ecological cost
 - Social (lifestyle): Eco-friendly behavior (resource and energy saving)
 - Cultural ethos: Consumerism → Environmentalism

- The sectors to be transformed (Example)
 - Land-use - Transportation - Green space - Building
 - Ecosystem - Energy - Living environment - Water
 - Wind - Waste

- Nature-based/Technology-based approach
 - a means
 - necessary for societal system-based approach
V. A Desirable Direction and Contents for Achieving Carbon Neutrality

3. Introduction of Governance to Policy-Making Process
V. A Desirable Direction and Contents for Achieving Carbon Neutrality

3. Introduction of Governance to Policy-Making Process

- Purpose
 - Less social conflict in the process of implementing policies
 - Through internalization of social conflict in advance (social consensus)

- Participants in governance system
 - Experts
 - Civil organizations
 - Residents
 - Stakeholders

- Decision of what stage of decision-making process to invite the participants
 - Decision of important issues on climate change
 - Discussion on the issues for establishing policies
 - Selection of the final issues
 - Establishment of policies
V. A Desirable Direction and Contents for Achieving Carbon Neutrality

4. Policy Effect Analysis

(1) Investment Efficiency Analysis by Policy

- Definition: reduction quantity of greenhouse gas emission compared to financial investment

- Examples (Jeju Province, South Korea)

<table>
<thead>
<tr>
<th>Policy to Be Implemented</th>
<th>Budget (million in US$)</th>
<th>Reduction Quantity (ton)</th>
<th>Budget for Reducing 1 ton (US$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afforestation (6,500ha)</td>
<td>93</td>
<td>38,350</td>
<td>2,430</td>
</tr>
<tr>
<td>Supply of Clean Energy</td>
<td>104</td>
<td>227,372</td>
<td>460</td>
</tr>
<tr>
<td>Substitute of Traffic Signal with LED</td>
<td>3</td>
<td>9,735</td>
<td>310</td>
</tr>
</tbody>
</table>

- Function: a guide for the decision of policy priority
V. A Desirable Direction and Contents for Achieving Carbon Neutrality

4. Policy Effect Analysis

(2) Effect Analysis of All Policies as a Whole

- Need to examine whether the policies launched are effective or not on a regular-period base
- An analytic framework

- Function: A guide for identifying what way the policies launched should be modified and/or supplemented
VI. Concluding Remarks

1. Carrying Capacity of the Earth - A Synthetic Indicator
2. Implications of Industrialization
3. Capacity Building
VI. Concluding Remarks

1. Carrying Capacity of the Earth - A Synthetic Indicator

(1) Concept of Carrying Capacity: Two Capacities as a Reality
 - Capacity to provide humans with resources
 - Capacity to absorb and treat wastes discharged by humans

(2) The Status of Carrying Capacity
 - At a global level: exceeded by 2.50 times (2000)
 - South Korea: exceeded by 9.5 times (2003)
 - Exceeding countries: USA (1.8 times), Japan (6.0 times), etc.
 - Not exceeding countries: Canada, Australia, Brazil, Philippines, etc.
VI. Concluding Remarks

1. Carrying Capacity of the Earth - A Synthetic Indicator

(3) How to Solve the Exceeded Carrying Capacity

- Find a planet
 - that all conditions are the same as the Earth and
 size is 2.5 times bigger than the Earth,
 - and 7.7 billion population immigrate to the planet (not possible)
- Expanding the size of the Earth 2.5 times bigger (not possible)
- Reducing one-third of current production (not possible)
- Killing 2 billion population (not possible)
VI. Concluding Remarks

1. Carrying Capacity of the Earth - A Synthetic Indicator

(3) How to Solve the Exceeded Carrying Capacity

- The Earth continues voyage with 2.5 times more passengers than carrying capacity → will be sunk into the sea in 200 years
 - Extinction of about 20 - 30% species
 - Human: Their bad luck is all of their own doing
 - Other species: innocent, but buried alive with humans due to having met bad neighbors
VI. Concluding Remarks

2. Implications of Industrialization

- Industrialization
 - Improvement of material affluence/convenience in life
 → Increase in extraction of natural resource
 → Increase in emission of gaseous/liquid/solid waste
 → Excess of carrying capacity (nature)
 → Pollution/destruction of original quality of nature
 → Crisis of nature → Crisis of human existence
VI. Concluding Remarks

2. Implications of Industrialization

- Examining the implications of industrialization
 - Humans: Beneficiary/victim of industrialization → Committed a self-contradiction
 - Having resulted in making a fire of my house
 - Strategy responding to the crisis of nature → Action for solving the self-contradiction

- The limitations inherent in sustainable development having been having been promoted from the 1990s
 - Horizontal perspective → Conflict among the three goals
 - Evidence
 - Still lots of challenges covering wide range of sectors
 - The challenges are being deteriorated
VI. Concluding Remarks

3. Capacity Building

- Availability of finance
- Availability of advanced technologies
- Establishment of cooperative network (social consensus)
 - Industry: green management
 - Civil organization: environmental movement
 - Mass media: providing information/discussion venue/publicity, etc.
 - Citizen: environmentally friendly behavior in everyday life
 - Cultural ethos: Quality of life (consumerism → environmentalism)
- Establishing cooperation network with domestic/foreign governments and institutes for (ex.)
 - Exchanging information and data on climate change
 - Joint activities responding to climate change
Our Choice

- Luxury Titanic to be sunk shortly into the sea?
- Poor and small Noah’s ark?
Our Choice

If we continue enjoying Titanic, our near future in everyday life

Thanks a lot for your attention